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The spectrum of scattered electrons due to bremsstrahlung from static nuclear charge and magnetic-
moment distributions is calculated in Born approximation. As expected, large reductions from point-nucleus 
cross sections are obtained for scattering involving large momentum transfers, and magnetic bremsstrahlung 
is important in the same large-angle region where magnetic elastic scattering is appreciable. Integrations 
were carried out numerically on an IBM-7090 computer for some representative cases using form factors 
from elastic electron scattering. The results may be used in interpreting inelastic electron-scattering experi­
ments where one wishes to distinguish the radiative tail of the elastic peak from inelastic nuclear processes. 

I. INTRODUCTION 

EXCITATION of nuclei by the inelastic scattering 
of high-energy electrons is a useful technique for 

the investigation of nuclear structure.1 The process is 
ordinarily detected by observing the spectrum of the 
scattered electrons. This requires knowledge of the 
spectra from competing mechanisms for inelastic scatter­
ing of electrons, since they must be unfolded from the 
observed spectrum. The purpose of this paper is to 
discuss one of the fundamental background processes, 
namely, the radiative tail of elastic electron scattering 
due to bremsstrahlung. 

Our concern here is to explore how nuclear effects 
modify the well-known Bethe-Heitler results for brems­
strahlung in a point-charge Coulomb field. We describe 
the nucleus by arbitrary static charge and magnetic-
moment distributions (or by their Fourier transforms, 
the form factors Fch and Fm&g). This procedure neglects 
bremsstrahlung processes in which the nucleus is left in 
an excited state.2 

In Sec. II we calculate the totally differential cross 
section for bremsstrahlung using the Born approxima­
tion, i.e., keeping the lowest order nonvanishing terms in 
the external electromagnetic field of the nucleus. The 
spectrum of the scattered electrons may then be ob­
tained from a single integration which, owing to the 
presence of the form factors F0h. and Fmag, must, in 
general, be done numerically. Analytic results for the 
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1 W. C. Barber, Ann. Rev. Nucl. Sci. 12, 1 (1962); D. B. Isabelle 
and G. R. Bishop, Nucl. Phys. 45, 209 (1963). 

2 The radiative tail from an excited nuclear level is usually 
assumed to have the same shape as the elastic case, and for 
excitation energies less than 30 MeV, where a few separate inelastic 
peaks contribute, the radiative tail from the elastic peak domi­
nates. An iterative procedure for calculating the radiative tail from 
such inelastic process, given sufficient experimental data, has been 
proposed by several authors, e.g., Y. S. Tsai, Nucleon Structure: 
Proceedings of the 1963 Conference at Stanford University, edited 
by R. Hofstadter and L. I. Scruff (Stanford University Press, to be 
published); D. B. Isabelle and G. R. Bishop, Ref. 1. 

spectrum from a point charge and point magnetic 
moment are discussed. In Sec. I l l we give some repre­
sentative numerical results displaying the effects of 
finite nuclear size and magnetic-moment distribution on 
the electron spectrum. 

It is known from elastic scattering of high-energy 
electrons that the use of the Born approximation is 
justified for light nuclei, except when the momentum 
transfer is near a zero of the form factors.3 Similar re­
marks apply to the radiative tail from elastic scattering; 
large distortions are introduced into the totally differ­
ential cross section in the region of these diffraction 
minima. Usually two particular momentum transfers 
give a large contribution to the integral over the totally 
differential cross section; provided neither of these 
coincides with a zero of the form factors, the Born-
approximation result for the electron spectrum may be 
trusted. In somewhat heavier elements, by analogy with 
the elastic case, one will not trust the Born approxima­
tion at a given angle beyond the incident energy for 
which the dominant momentum transfers first approach 
a zero of the form factors (q<l F_1). This is probably 
the most serious limitation in the present work. 

Some further features which we neglect in the present 
calculation should be mentioned: (i) higher order terms 
in the electromagnetic field (as distinct from the 
external field), (ii) screening of the nucleus by atomic 
electrons, and (iii) nuclear recoil. The first of these is at 
most a fraction of a percent.4 Screening is not important 
for high-energy electron scattering except at exceedingly 
small angles5 [sin2JO of the order of {Zak/^E^E)1'2 

where the notation is defined below] due to the com­
paratively large momentum transfers involved.6 The 
corrections to the Bethe-Heitler equation due to recoil 
have been discussed by Drell7 and we expect that similar 

3 R. Herman and R. Hofstadter, High Energy Electron Scattering 
Tables (Stanford University Press, Stanford, California, 1960), 
pp. 8-13. 

4 W. Heitler, Quantum Theory of Radiation (Oxford University 
Press, New York, 1954), 3rd ed., p. 254. 

5 The argument follows Heitler, Ref. 4, Sec. 25.3. 
6 On the other hand, screening may be very important when the 

bremsstrahlung spectrum is considered; one then introduces 
atomic form factors in the usual manner. 

7 S. D. Drell, Phys. Rev. 87, 753 (1952). 
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corrections apply to the magnetic bremsstrahlung. 
These corrections are believed to be a less serious source 
of error than the use of the Born approximation, except 
perhaps for the very lightest nuclei. 

After the completion of this work a related calculation 
by Maximon and Isabelle8 was brought to our attention. 
These authors are also concerned with the radiative tail 
from elastic electron scattering. However, they do not 
discuss magnetic effects, which are necessary for the 
large-angle electron-scattering experiments which moti-

Weuse the notation: units fi~c~me=\\initial electron 
momentum and energy: p0, E0; scattered electron 
momentum and energy: p, E; photon momentum and 
energy: k, k=EQ—E; momentum transfer: q=p0—p—k; 
0=ZVO

2/137^Z25.794X1O-28 cm2 (r0= classical elec­
tron radius); nuclear spin and magnetic moment: 
I, !JL=\(e/2Mp). 

TCh. is just the familiar expression from the Bethe-
Heitler equation; T m a g is a very similar looking but 
essentially different expression. 

The form factors FCh and F m a g , arising from the 
nuclear charge and magnetic-moment distributions 
p(r) and ni(r)=/xl//, respectively, enter into the calcu­
lation as follows. The external potential, in momentum 
space, is given by9 

^4o(q)= (27r)-3<r2 ( p ( r ) exp(iq-r)dr, (4) 

A(q)= ( 2 T T ) - V 2 / j(r) exp( iq - r )^ , (5) 

where the magnetization current density is written 
as V X v ( r ) = j(r). Using the identity V X ( ^ i q , r ) 

8 L . C. Maximon and D. B. Isabelle, Phys. Rev. 133, B1344 
(1964). We are grateful to Professor Barber for informing us of 
this work. 

9 P. V. C. Hough, Phys. Rev. 74, 80 (1948). 

vated the present work, and they focus their main 
attention on the rederivation of the high-energy limit 
expressions of Schiff and the corrections thereto. 

II. ANALYTICAL RESULTS 

The differential cross section for bremsstrahlung from 
static charge and magnetic-moment distributions, after 
summing over fmalj^electron and nuclear spins and 
photon polarizations, and averaging over initial electron 
and nuclear spins, is found to be 

= i q X ^ q * r + j ^ q ' r , Eq. (5) may be transformed into 

I X q f 
A(q) = ;(27r)-3 / M(r) exp(iq-r)Jr, (6) 

Iq2 J 
where we have written the second integral as a surface 
integral which vanishes. Equations (4) and (6) are just 
the potentials due to a point charge and magnetic 
moment multiplied by the form factors for the nuclear 
charge and magnetic-moment distributions,respectively, 

* * ( q ) = (Ze)~' fp(t) exp(iq-r)^r, (7) 

^magCqWjir1 / M(r) exp(*q-r)dr. (8) 

There are no cross terms in Eq. (1) between the scalar 
and vector potentials because of the nuclear spin sums. 
If the nuclear charge and magnetic-moment distribu­
tions are spherically symmetric the form factors will be 
functions of q2 only; in the subsequent discussion we will 
assume that this is the case. 

I t can be shown that the form of Eq. (1) is quite 
general, i.e., that any elastic or inelastic process occurring 
in electron scattering which involves one-photon ex­
change only and in which the nuclear states are not 
observed depends on two form factors (which in general 

4> p dk d&Jttk f / M \ 2 / 7+1\ 1 

where 

(4£2-g2)(kXpo)2 (4£o2-g2)(kXp)2 k2(kXv)2+k2(kXVo)2-^EE0+2k2-q2)(kXp)' (kXPo) 
rch= + +2 , (2) 

O£o-k .po ) 2 ( & £ - k . p ) 2 (*JE0-k-po)(*JS-k.p) 
and 

(4^2+22)(kXpo)2 (4^0
2+g2)(kXp)2 /fcEo-k.po fcE-k-p' 

j m a g = = 1 r-4fe2( 1 — 
OEo-k-po) 2 ( & £ - k . p ) 2 \ & E - k . p &£o-k-p0 . 

^ 2 (kXp) 2 +^ 2 (kXpo) 2 ~C4C^o- l )+2^ 2 +g 2 ] (kXp) - (kXPo) 
+ 2 . (3) 

(W5o-k-p0)(fcE-k-p) 
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are functions of momentum and energy transfer).10 The 
same form factors given by Eq. (7) and (8) enter into 
the cross section for elastic electron scattering. A simple 
calculation shows that for elastic scattering from the 
external field given by Eq. (4) and (5) the cross section is 

la ZV0
2 (1-v2) 

dtt 4 fl4sin4i@ 
| ^ c h | 2 ( l - ^ 2 s i n 2 | 0 ) 

•O'frV- | 2
9 V ( l + s i n 2 § 0 ) (9) 

where v=p0/Eo and q2=4:p0
2 sin2!©. For ic^l, this 

becomes11 

da ZV0
2 cos2§© 

dtt 4E0
2 sin4i@ •*©"( - ) 

31 / 
X | ^ m a g | Y ( l + 2 t a n 2 i @ ) , (10) ! 

which except for the proper kinematic factors (i.e., 
neglecting recoil) is the Rosenbluth-type formula for 
elastic electron-nucleus scattering. Thus we can iden­
tify12 \FGh\

2 and \Fmag\
2 (in the limit q/M<0) with the 

experimentally determined form factors from elastic 
electron scattering. 

In order to calculate the distribution in energy and 
angles of the scattered electrons it is necessary to 
integrate Eq. (1) over photon angles dQk- This integra­
tion was first performed by Racah13 starting from the 
Bethe-Heitler equation, and the calculation was later 
repeated by McCormick et al.,u who corrected some 
misprints and also gave a useful approximation for high 
energies and large angles. An approximate integration 
of the Bethe-Heitler equation was performed by Schiff,15 

who considered only the bremsstrahlung emitted parallel 
to either the incident or scattered electron; Schiff's re­
sult is easily generalized to include the effect of a finite-
sized charge distribution.16 This approximation does not 
apply to situations where the elastic scattering is small, 
that is for scattering angles greater than 160°.17 Since 
Eq. (1) contains essentially arbitrary functions of q2, we 
employ a transformation similar to that of Rawitscher18 

to transform an angular integration into one over q2. In 
a coordinate system with z axis parallel to the fixed 
vector a=p0—p and with azimuth ip measured from the 
plane of a and p0, dtik —•> {ak)~ldxd<p, where x^^q2. The 

10 J. D. Bjorken (unpublished); see also Y. S. Tsai, Ref. 2. 
11 J. M. Jauch, Helv. Phys. Acta 13, 451 (1940); J. H. Scofield 

(private communication). 
12 J. D. Walecka and R. H. Pratt, HEPL-272 (unpublished). 
13 G. Racah, Nuovo Cimento 11, 476 (1934). 
14 P. T. McCormick, D. G. Keiffer, and G. Parzen, Phys. Rev. 

103, 29 (1956). 
15 L. I. Schiff, Phys. Rev. 87, 750 (1952). 
16 J. I. Friedman, Phys. Rev. 116, 1257 (1959); W. C. Barber, 

F. Berthold, G. Fricke, and F. E. Gudden, ibid. 120, 2081 (1960). 
17 W. C. Barber, Ref. 1. 
18 G. H. Rawitscher, Phys. Rev. 101, 423 (1956). 

FIG. 1. Relative 
contributions to the 
radiative tail of the 
elastic peak from a 
point charge (Ze) 
and point magnetic 
moment (\e/2Mp) in 
the limit E0, £ » 1 , 
e»E0-1 . 

<p integration can be performed analytically and the 
result expressed as 

da 

dEdtt 47T po J amin 

+ 

Fch\
2R 

4> p rXm**dx 

^TTpoJxmin X2 

ZXI f mag I -^mag (11) 

where 

i?ch= - 2 a - 1 - (2E 0
2 -x) (fxfo+xP)X-*t* 

- ( 2 E 2 - x) (a/5+^o)Xo-3 / 2+ {2 (E0
2+E2)+a 

-x-2Z(l+a)(Eo2+E2-x)-k2~](a-x)-1} 

X(X-U2-X<r112), (12) 

i?mag= 2 a - 1 - (2p0
2+x) (a(3o+x(3)X-*'2 

- (2p2+x) (a(3+xl3o)X(r*/2+ { 2 (E0
2+E2) -a 

+x-2l(l+a)(p0
2+p2+x)~k22(a-x)~'} 

X(X~^2-XQ~1/2), (13) 

and where 

#min = "2<7min =z'2\^ "V > 

^-max^"2#max = 2fv^ ' "v > 

a=EE0—p«po— 1, 

i3o=a-po=^o2-po-p, 

0 = a - p = p o - p - £ 2 , 

Xo=po2oc2+2x[k2-a(EE0-l)lL+p2a2, 

X=p2x2+2x[k2-a(EE0~l)2+po2a2. 

Equation (11) is the exact Born approximation result 
for the spectrum of scattered electrons due to brems­
strahlung, from a static spherically symmetric distribu­
tion of charge and magnetic moment. 

In general, the functional form of FCh(x) and Fm&g(x) 
requires that the integration over x in Eq. (11) be done 
numerically. However, for certain choices of form 
factors, the integral may be done analytically. Here we 
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consider the case of point distributions (for which 
|^ch|2= \Fmag\

2=l) to provide a reference spectrum 
for the finite nuclear-size effects to be discussed in 
Sec. I I I . The point results also give an indication of the 
relative importance of charge and magnetic brems-
strahlung, i.e., bremsstrahlung due to interactions with 

the charge and magnetic-moment distributions of the 
nucleus, respectively). For this case the integral of 
RChPC~2 yields the same result as obtained by previous 
authors.13,14 We simply note that \ fxmin

Xma* RchOC~ldx 
equals the right-hand side of Eq. (2) of Ref. 14 with 
me— 1. The corresponding result for the magnetic term is 

I ,.zmax fa 1 /a+k\ 1 
' R*w—=-ln( ) [ a 2 + 2 a O E £ 0 - l ) - 2 & 2 ] 

n x a \a—k/ ka2 

E0
2+E2+a-l+2cr1(EE0-l) 

k[a(a+2)J* 

a(a-l)+E(EQ+E)-2 

ln{ l+a+[a(o :+2)] 1 / 2 } 

a(a-l)+Eo(E0+E)-2 
\n(E+p) • m(£0+j>o). (14) 

pa2 poa2 

In the limit of high energies and large scattering angles, Eo, E^>1, ®^>Eo~\ which is certainly valid for most 
electron-scattering experiments, these expressions simplify greatly.14 One obtains 

where 
da=da^-jr damag, 

4> p dE dQ,p 
d**= LA*(y,Q) ln2£o+5 c h (7 ,©)] , 

2wpQ k Eo2 

#0"mag— 
4> p dE / 2 / A 2 / / + l \ 

-dQv 

imag(7,0) = 

2lT pQ k 

(1+72)2 cos2i@ 

273sin4J0 

( l+7 2 ) ( l+s in 2 |@) 

7sin2§© 

l+7 2 fcos 2 |@ 
£ c h ( 7 , © ) = - — — — 1*7-

1 + 7 2 1—7+7' 

2 7
3 I sin4JO 2 sin4i© sin 

y+72 / 7 27
2 \ , , 1 

+ ( )ln(sin2i©) 
2 | © Vsin4!© ( I+7 2 ) sin2!©/ J 

1 - 7 l + s i n 2 | © /1+a 
^mag(7,®) = ln7 r-o-lnl 

sin2!© VI -a/ \ 2 7 s i n 2 j e / 

5 6 (1+T2) sm2 |0> 

1 + 7 2 

ln(7sin2J©). 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

In these expressions, 

7 = £ /£o and a= ( l - 7 ) [ ( l - 7 ) 2 + 4 7 s in 2 !©]- 1 ' 2 . 

The ratio of the magnetic to the charge elastic brems­
strahlung for the point case [Eq. (17) divided by 
Eq. (16)] is 

dan 7 + 1 \ / Eo \ 2 A mag l n 2 £ 0 + £ n 

daCh. \z) \ 3/ AM J Ach\n2EQ+Bc] 

(22) 

where we have put ix — \e/2Mp. As expected, the mag­
netic bremsstrahlung is most appreciable at ©=180°, 
where ^4ch=0, and becomes less important as Z in­
creases. I t is interesting to note that for fixed 7 and © as 
EQ-^> 00 the magnetic bremsstrahlung becomes rela­

tively more and more important. In Fig. 1 we illustrate 
the relative contributions of the point charge and point 
magnetic moment for E 0 =54 MeV and 0 = 180° using 
Eqs. (16) and (17). The contribution of the magnetic 
bremsstrahlung is large for scattered electrons under­
going small energy loss, i.e., near the elastic peak from 
magnetic scattering. The relative importance of the 
magnetic bremsstrahlung can be inferred from Fig. 1 
by multiplying the ratio of the two curves by the factor 
(A/Z) 2 ( J+ l ) /3 / , which in the case of Al27 is ^0.037 
yielding a ratio da^^Jda^^0.026 for 7=0 .7 and ~ 1.75 
at 7 = 0.95. (For Cu these percentages are reduced by a 
factor of 10.) In passing, it may be noted that in the 
limit 7—» 1, Eq. (22) becomes the same as the corre­
sponding ratio for elastic scattering, as expected. 
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FIG. 2. Elastic peak in electron scattering from hydrogen 
Q. Goldemberg (unpublished)]. The dashed curve is the approxi­
mate analytic result for a point magnetic moment given by 
Eq. (17). 

Recently, magnetic bremsstrahlung in electron-
proton scattering has been observed for the first time. 
Figure 2 shows the results of a measurement of the 
elastic peak in hydrogen for an incident energy of 54 
MeV and a scattering angle of 180°.19 The experimental 
points have not been corrected for magnetic brems­
strahlung. The dashed curve represents our approximate 
theoretical result for the elastic magnetic brems­
strahlung given by Eq. (17). (At these energies the 
effects of the finite size of the proton are small.) We have 
interpreted y as the fraction of the peak energy, i.e., we 
replace Eo by the peak energy (the effects of recoil are 
about 10%). I t is encouraging that Eq. (17) agrees 
fairly well with the data.20 

Finally, in Fig. 3 we give some indication of how the 
relative importance of charge and magnetic brems­
strahlung depends on the scattering angle @. The 
magnetic effects begin to be important for angles bigger 
than 150° for electrons scattered with small energy loss. 

III. REPRESENTATIVE NUMERICAL RESULTS 

We return now to the discussion of Eq. (11) for the 
case of general form factors, for which numerical 
integration is necessary. The functions RCh. and i£mag are 
generally sharply peaked about two particular values 
of x, namely 

xa=a-\-k(k-\-p—po cos©), 

Xb=a-\-k(k+p cos© — po). 

These correspond to values of q for which the photon is 
emitted parallel to the scattered or incident electrons, 
respectively. I t can be seen from Eqs. (2) and (3) that 
the differential cross section can become large for these 
values since at relativistic energies the denominators 
(kE—p»k) and (kEo~ po*k) are very small when k is 
parallel to p or po. The dominant terms in the totally 
differential cross section give rise to terms in Eq. (11) 
which behave like X~112 or X0~1/2, that is like 

X-1'*={£p(x-xa)+k(E-p)(pQcos®-p)y 

+p0
2k2 sin2©}"1/2 

or 

Xoll2={\:po(x-xb)+k(EQ-po)(po-p cos©)]2 

+ ^ 2 s i n 2 © } ~ 1 / 2 . 

A sizable contribution to the integral in Eq. (11) may 
arise from a small region in x about xa or Xb, and this is, 
in fact, the basis of Schiff's15 approximation. Thus, one 
might try to separate the contribution to the integral 
due to the "peaks" from the remainder, as do Maximon 
and Isabelle,8 and integrate over the peaks analytically 
using the high-energy approximation. However, as 
Maximon and Isabelle point out, the "background" 
integral which remains is never negligible, being of the 
same order of magnitude as the integral over the 
"peaks;" in some cases it is actually the dominant 
contribution. Moreover, the "background" integral 
must still be evaluated numerically,8 and it is not much 
easier to compute than the entire integral. 

We have therefore proceeded directly to evaluate the 
integral in Eq. (11) numerically. Concerning the 
machine program we will only mention two points. First, 
it is necessary to use a double-precision subroutine to 
compute the integrands, i.e., R^ and Rmag. Second, it is 
desirable to divide the full range of x into smaller 
intervals, two of which surround the values xa and #&, 
and to integrate over each smaller interval separately. 

19 J. Goldemberg (unpublished). 
20 More exact calculations for electron-proton bremsstrahlung 

exist, which do not neglect proton recoil: R. A. Berg and C. N. 
Lindner, Phys. Rev. 112, 2072 (1958); Nucl. Phys. 26, 259 (1961); 
Y. S. Tasi, Ref. 2. 

90° 120° 150* 
SCATTERING ANGLE ® 

FIG. 3. Dependence on the scattering angle of the ratio of the 
point magnetic moment to the point-charge bremsstrahlung. The 
three curves are for v = E/E0 = 0A, 0.8, and 0.95. 
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0.5i 

> 0.3 

THIS CALCULATION 
Mc CORMICK ETAL. 
SCHIFF 

Be" at E0 =100 MeV, 6=60' 

0.5 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 095 

FIG. 4. Comparison of the electron spectrum due to brems-
strahlung as determined by the present calculation with that of 
previous work. Here, x— ($X2.75F)2. 

Figure 4 illustrates the differences between the present 
calculation and previous ones for the case of brems-
strahlung from Be9 at an incident energy of 100 MeV 
and a scattering angle of 60°. For this choice of Eo and 
© the magnetic bremsstrahlung can be neglected. We 
used a hollow exponential type of form factor 

J W ) = [ i - (<7#)2/60][i+ {qRy/m-y*, 

with JR=2.75 F, which fits the elastic scattering from 
Be9 in this range very well.21 The difference between the 
present calculation and that of McCormick et al.u 

(point charge) is due to the finite nuclear size; the 
approximate integration of Schiff16 (modified to include 
the form factor16) is also shown. 

The effect of finite nuclear extension in reducing the 
radiative tail is clearly shown in Fig. 5, where we have 
plotted the ratio of cross section, given by Eq. (11), to 
the point cross section, for some spinless nuclei (the 
situation is not complicated by the presence of magnetic 
bremsstrahlung). The values of E0 (70 MeV) and 
® (180°) correspond to recent experiments at Stanford.22 

For simplicity, we have chosen a form factor correspond-

i.o, 

0.9| 

0.8 

0.7| 

0.6 

0.5 

0.4 

0.3 

0.2 

E0=70 MeV, 0 = 180° 
TRAPEZOIDAL CHARGE 

DISTRIBUTION ASSUMED 

0.25 0.35 0.45 0.55 0.65 
y=E/E0 

0.75 0.85 0.95 

FIG. 5. Ratio of the cross section calculated with form factors 
(determined from elastic scattering) to the point-charge result, for 
some spinless nuclei. 

ing to a trapezoidal charge distribution for all three 
nuclei, with values of the half-radius and skin thickness 
taken from Table 3 of Herman and Hofstadter.23 

Finally, in Fig. 6, we illustrate the effect of the con­
tribution of magnetic bremsstrahlung. Inelastic scatter­
ing experiments have been performed on Li7 at 180° 
using 41.5-MeV incident electrons.24 This nucleus has 
a large magnetic moment25 and a low Z [the factor 
(X/Z)2(/+l)/37 is approximately 0.65] so we expect 
magnetic effects to be important. As a first approxima­
tion we may set |FCh|2= l^magl2 and assume a trape­
zoidal form factor with parameters taken from Herman 

5X10 

4" 

Li7i E 0 - 41.5 MeV, 9 - 1 8 0 ° 
TRAPEZOIDAL DIST. 

IFchl -|Fmagl 

FIG. 6. Spectrum of scattered electrons due to bremsstrahlung 
from Li7, showing contribution of the charge and magnetic-
moment distributions. 

and Hofstadter.23 Besides the differential cross section, 
the separate contributions of dcr^ and damas are also 
shown in Fig. 6. It is seen that the ratio damae/d<TCh. is 
about 0.24 at 7 = 0.7 and rises up to 8.0 at 7=0.95. 
[This compares with ratios for the point case from 
Eq. (22) of 0.25 and 17.4, respectively.] 
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